The study of shadowing effect for LTE and 5G networks in suburban environment

Author:

Seah Shi Jie,Jong Siat LingORCID,Yin Lam Hong,Leow Chee Yen

Abstract

Abstract The presence of obstacles in the propagation path is a critical factor in air-to-ground (AG) communication. The behavior of wireless signal propagation depends on several variables, such as frequency, building height, elevation angle, and street design. This paper aims to compare the three established line of sight (LOS) probability model based on actual site data, including the building geometry in suburban environment. The comparison between these three models using the site data provide a guideline for selecting the LOS probability model based on the optimistic and pessimistic predictions. The shadowing loss was evaluated at frequencies 2 and 3.5 GHz with an elevation angle of 20° in two suburban locations at Universiti Tun Hussein Onn Malaysia. Three prediction models, ITU-R P.1410-5, Holis and Pechac, and Pang et al., available in the literature were used to identify and compare the line-of-sight probability. By focusing on the shadowing model in suburban area, the guideline for optimizing LOS communications or navigation in these challenging environments can be developed. The finding highlights the importance of considering building height in AG communication for network performance evaluation and design.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference17 articles.

1. Radio channel modeling for UAV communication over cellular networks;Amorim;IEEE Wireless Communications Letters,2017

2. Analysis of frequency-dependent line-of-sight probability in 3-D environment;Xiang;IEEE Communications Letters,2018

3. 10. ITU-R P.1410-5 (2012) Propagation data and prediction methods required for the design of terrestrial broadband radio access systems in a Frequency Range from 3 to 60 GHz.

4. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles;Khawaja;IEEE Communications Surveys and Tutorials,2019

5. Air-to-ground large-scale channel characterization by ray tracing;Song;IEEE Access,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3