Abstract
This paper presents the design of non-uniform concentric circular antenna arrays (CCAAs) of isotropic radiators with optimum sidelobe level (SLL) reduction. The biogeography-based optimization (BBO) method is used to determine an optimum set of excitation amplitudes that provide a radiation pattern with optimum SLL reduction with the constraint of a fixed major lobe beamwidth. The BBO method represents a new global evolutionary algorithm for optimization problems in electromagnetics. It is shown that the BBO results provide an SLL reduction that is comparable to that obtained using well-known algorithms, such as the particle swarm optimization (PSO), genetic algorithm (GA), and evolutionary programming (EP). Moreover, BBO results are compared with those obtained using the Matlab function Fmincon which uses a sequential quadratic programming (SQP) method. The comparison shows that the design of non-uniformly excited CCAAs using the SQP method provides a SLL reduction that is better than that obtained using global stochastic optimization methods, indicating that global optimization techniques might not really be needed in this problem.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献