Broadband microstrip antennas with Cantor set fractal slots for vehicular communications

Author:

Ez-Zaki FatimaORCID,Belahrach Hassan,Ghammaz Abdelilah

Abstract

AbstractVehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference30 articles.

1. 7. Klemp, O (2010) Performance considerations for automotive antenna equipment in vehicle-to-vehicle communications. Proceedings of URSI International Symposium on Electromagnetic Theory, Berlin, Germany. Piscataway, NJ, USA, IEEE, 2010, pp. 934–937.

2. A multifractal Cantor antenna for multiband wireless applications;Manimegalai;IEEE Antennas and Wireless Propagation Letters,2008

3. Microstrip patch antenna for 5.9 GHz dedicated short range communication system;Tiwari;International Journal of Advance Electrical and Electronic Engineering,2014

4. A compact conformal printed dipole antenna for 5G based vehicular communication applications;Usha Devi;Progress in Electromagnetics Research,2018

5. Study and analysis of conformal antennas for vehicular communication applications;Abishek;ARPN Journal of Engineering and Applied Sciences,2017

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3