A compact UWB antenna with dynamically switchable band-notched characteristic using broadband rectenna and DC-DC booster

Author:

Fakharian Mohammad M.ORCID

Abstract

AbstractIn this article, a dynamically switchable ultra-wideband (UWB) planar monopole antenna employing defected ground structure (DGS) with a folded stepped impedance resonator (SIR) that can operate as either a UWB mode or the single band-notched mode is introduced. The UWB monopole antenna contains a novel whirligig-shaped radiating patch and a chambered conductor as a partial ground plane. The switchable UWB antenna uses one PIN diode as switching elements in the DGS-SIR structure without any biasing network. When the state of diode is OFF, the planar monopole antenna changes to the UWB mode, and when the diode is turned ON, a frequency notch is created at 5–6 GHz. The state of diode is set to the “ON” state dynamically in the presence of a 5–6 GHz RF signal that is detected by using a wireless power management unit (PMU) that contains a broadband rectenna and a DC-DC passive booster. The rectenna consists of a novel cypress-shaped monopole antenna as a signal receiving part and two sub-rectifiers which are connected to a 3 dB branch-line coupler with a grounded isolation port. The antenna switches from UWB to single band-notched when an RF input signal (≥8.5 dBm) in the 5.25 GHz is sensed by the RF PMU with a conversion efficiency of 26% and DC output voltage of 0.36 V, and it fades immediately in real time when the external RF signal is eliminated. In the three-tone signals, the efficiency and input signal improvements are about 10% and −5.5 dBm in the low-power levels, especially, and so develop and enhance the performance of the dynamic reconfigurability.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A compact dual-band rectenna for WIFI bands;2023 3rd International Conference on Intelligent Power and Systems (ICIPS);2023-10-20

2. A novel MIMO antenna with switchable UWB/5G modes for vehicular terminals;Microwave and Optical Technology Letters;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3