Abstract
Abstract
This paper outlines the results of particle-in-cell simulations of a relativistic magnetron with six cavities and a transparent cathode configuration. Excitation of the π mode in the interaction region was attained, which in turn led to
$\textrm{TE}_{11}$
mode emission of microwaves to the waveguide. This mode transformation was achieved with a non-symmetric diffraction output, consisting of four large and two small tapered cavities. Simulations were performed with a voltage across the anode-cathode gap varying from 164 to 356 kV, and axial magnetic field strengths between 0.24 and 0.34 T. Maximum efficiency of 37% was obtained with a peak output power of 590 MW, having a voltage of 261 kV and a magnetic field of 0.30 T. Furthermore, a frequency of 2.57 GHz and a rise time of microwaves at the waveguide of 15 ns were demonstrated. The electron leakage current was shown to decrease from ∼10
$\%$
to less than
$1\%$
when employing a longer interaction region, while still exhibiting good performance. Additionally, we show that there is an optimal range of voltages given a magnetic field, for which π mode excitation with high efficiency is attained.
Publisher
Cambridge University Press (CUP)