Time-modulated linear array synthesis with optimal time schemes for the simultaneous suppression of sidelobe and sidebands

Author:

Chakraborty AvishekORCID,Ram GopiORCID,Mandal DurbadalORCID

Abstract

Abstract An efficient analysis of time-modulated array (TMA) toward realizing less-attenuating radiation patterns with simultaneously suppressed sidelobe and sidebands is presented in this paper. In this framework, an optimal outer element-controlled time sequence is derived. The proposed time scheme, along with optimized array excitations, is profitably applied for the desired solution. TMAs are considered unconventional alternatives to the phased arrays. The desired array radiation features can be attained by periodically enabling and disabling the array elements through high-speed switches. Despite the advantages of architectural simplicity and real-time reconfigurability of periodic time sequences, time-domain antenna arrays inherently generate unavoidable sideband radiations (SRs). The undesired SRs obtained at multiple harmonics around the carrier frequency of the array resembles power loss in unintended directions. This paper aims to minimize the SRs as well as the sidelobe level (SLL) for an efficient analysis of time-modulated linear array (TMLA) with high-directive radiation patterns. The starting instants and the period of on-times are optimized to generate a unique shifted time scheme for the edge elements of the TMLA to reduce the sideband levels (SBLs). The array excitations and the uniform spacing between the elements are also optimized together with the shifted time scheme for the coveted solution. Other methods of suppressing SLLs and SBLs with shifted pulse schemes and sub-sectioned pulse schemes are also presented for a fair comparison. Modified versions of the particle swarm optimization algorithm (PSO) are applied for the desired solutions. The optimal results attained by wavelet mutation-based novel PSO is compared with the conventional PSO and the modified novel PSO-based results. The representative results are reported, and the superior performance abilities of the proposed method compared to other published studies are assessed.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3