Abstract
AbstractIn order to merge the advantages of the traditional compressed sensing (CS) methodology and the data-driven deep network scheme, this paper proposes a physical model-driven deep network, termed CS-Net, for solving target image reconstruction problems in through-the-wall radar imaging. The proposed method consists of two consequent steps. First, a learned convolutional neural network prior is introduced to replace the regularization term in the traditional iterative CS-based method to capture the redundancy of the radar echo signal. Moreover, the physical model of the radar signal is used in the data consistency layer to encourage consistency with the measurements. Second, the iterative CS optimization is unrolled to yield a deep learning network, where the weight, regularization parameter, and the other parameters are learnable. A quantity of training data enables the network to extract high-dimensional characteristics of the radar echo signal to reconstruct the spatial target image. Simulation results demonstrated that the proposed method can achieve accurate target image reconstruction and was superior to the traditional CS method, in terms of mean squared error and the target texture details.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献