Hyperparameters optimization of neural network using improved particle swarm optimization for modeling of electromagnetic inverse problems

Author:

Sarkar Debanjali,Khan TaimoorORCID,Ahmed Talukdar Fazal

Abstract

Abstract Optimization of hyperparameters of artificial neural network (ANN) usually involves a trial and error approach which is not only computationally expensive but also fails to predict a near-optimal solution most of the time. To design a better optimized ANN model, evolutionary algorithms are widely utilized to determine hyperparameters. This work proposes hyperparameters optimization of the ANN model using an improved particle swarm optimization (IPSO) algorithm. The different ANN hyperparameters considered are a number of hidden layers, neurons in each hidden layer, activation function, and training function. The proposed technique is validated using inverse modeling of two meander line electromagnetic bandgap unit cells and a slotted ultra-wideband antenna loaded with EBG structures. Three other evolutionary algorithms viz. hybrid PSO, conventional PSO, and genetic algorithm are also adopted for the hyperparameter optimization of the ANN models for comparative analysis. Performances of all the models are evaluated using quantitative assessment parameters viz. mean square error, mean absolute percentage deviation, and coefficient of determination (R2). The comparative investigation establishes the accurate and efficient prediction capability of the ANN models tuned using IPSO compared to other evolutionary algorithms.

Funder

Science and Engineering Research Board

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3