Microfluidic reflective-mode differential sensor based on open split ring resonators (OSRRs)

Author:

Muñoz-Enano J.ORCID,Vélez P.ORCID,Gil M.,Martín F.

Abstract

AbstractThis paper proposes a differential sensor based on a pair of open split ring resonators (OSRR) operating in reflection. The output signal is thus the differential reflection coefficient of both resonators, intimately related to their dielectric loading. Thus, for identical loads in both sensing resonators, the individual reflection coefficients are equal, thereby providing an ideally null output signal. By contrast, when unequal dielectric loads truncate the symmetry, the reflection coefficients are different, resulting in a differential output signal related to the level of asymmetry. In order to ease the measurement of the output signal, a rat-race hybrid coupler is used. The OSRR sensing loads are connected to the coupled ports of the hybrid coupler, whereas the input signal is injected to the Δ-port, and the output signal is collected at the isolated port (Σ-port). By this means, the output signal, i.e. the differential reflection coefficient between both sensing loads, is obtained from the transmission coefficient of a simple two-port structure. For experimental validation purposes, the sensor is applied to the measurement of isopropanol content in aqueous solutions, and for that purpose, the sensitive regions are equipped with microfluidic channels.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microwave sensors loaded with metamaterial-inspired resonators for dielectric material characterization: A review;Sensors and Actuators A: Physical;2024-07

2. Sensitivity Enhancement of Microwave Split-Ring-Resonator Sensors;IEEE Transactions on Components, Packaging and Manufacturing Technology;2024-05

3. Flexible and Fully Printed Passive RF Resonators for Contact‐Less Solution Sensing;Advanced Functional Materials;2024-03-21

4. Solute Concentration Sensing in Aqueous Solutions with Coupled Microstrip Resonators;Lecture Notes in Electrical Engineering;2024

5. Planar Microwave Sensors;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3