Abstract
Abstract
This manuscript presents a novel design for an absorptive bandpass filter for mm-wave applications, specifically the commercial FR2 spectrum. Three bands have been selected to be properly input matched with only one of them being the passband, where the insertion loss is minimized. The proposed approach relies on a multiplexer topology implemented through microstrip lines and on thin-film manufacturing process on alumina to shrink the footprint. Cascades of half-wavelength C-shape open-ended resonators are exploited to create the matched bands and define the filter’s selectivity. The selected passband spans from 26.5 to 28.5 GHz, with a measured maximum insertion loss of 3.05 dB for a −3 dB fractional bandwidth of 7.3%. Two absorptive bands are realized to match signals at 24 and 32.25 GHz. The alumina die footprint is 5500 × 3440 µm2, compatible with immediate integration within a mm-wave lineup.
Publisher
Cambridge University Press (CUP)