FDTD-based SAR calculation of a wearable antenna for wireless body area network devices

Author:

Savcı Hüseyin ŞerifORCID,Kaburcuk FatihORCID

Abstract

Abstract Wireless-connected wearable electronics are finding extensive usage for diagnostic and therapeutic purposes after the globally spread pandemic disease of COVID-19. Although they are undoubtedly helpful for keeping physical distance, their health effects are still under investigation from different aspects and are still a concern for the end-users. In this study, a custom M-shaped wearable antenna covering the wireless body area network and wireless local area network frequencies is designed, built, and measured. A beret cap made from a 2 mm thick textile is used as a substrate. The specific absorption rate (SAR) in a realistic human-head model due to electromagnetic energy produced by the antenna is evaluated using the finite-difference time-domain method. The SAR distributions for 1-g and 10-g tissues are calculated at 2.4 and 5.8 GHz. It is shown that the obtained maximum SAR values for 1-g and 10-g tissues at each frequency of interest were less than the limits determined by IEEE RF exposure guidelines and standards.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference44 articles.

1. 11. Ulcek, J and Cleveland, RF (1997) Evaluating compliance with FCC guidelines for human exposure to radio frequency electromagnetic fields. Supplement B to Federal Communications Commission OET Bulletin 65 (Edition 97-10).

2. 29. Ramli, MN , Soh, PJ , Abdul Rahim, H , Jamlos, MF , Giman, FN , Hussin, EFNM , Lago, H and Van Lil, E (2017) SAR for wearable antennas with AMC made using PDMS and textiles. 2017 XXXIInd General Assembly and Scientific SympoRFum of the International Union of Radio Science (URSI GASS), 1–3.

3. 27. Al-Ashwal, WAM and Ramli, KN (2014) Small planar monopole UWB wearable antenna with low SAR. In 2014 IEEE Region 10 Symposium, pp. 235–239.

4. Efficient electromagnetic analysis of a dispersive head model due to smart glasses embedded antennas at Wi-Fi and 5G frequencies;Kaburcuk;Applied Computational Electromagnetics Society Journal,2021

5. 6. IEEE Standard (2012) IEEE standard for local and metropolitan area networks – part 15.6: Wireless Body Area Networks. IEEE Computer Society, IEEE Standard 802.15.6-2012, pp. 1-271, 29 Feb. 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3