High capacity chipless RFID tags for biomass tracking application

Author:

Ali AmjadORCID,Smartt Christopher,Lester Ed,Williams OrlaORCID,Greedy Steve

Abstract

Abstract The design of a low-cost, flexible, miniaturized, and a high code density chipless radio-frequency identification (RFID) tag is presented as a solution for tracking the transportation of biomass fuel pellets. The performance of the tag is presented and demonstrates the applicability of the design for different material systems, while maintaining a compact size of 5.06 cm2. The tag consists of nested concentric hexagonal elements and a central spiral resonator suitable for ID encoding. The tag presented demonstrates code density of 3.6-bits/cm2, possesses angular stability up to 60°, and high radar cross section (RCS). The tag performance was also observed for tracking 5 kg of fly-ash biomass. Additionally, as the tag mass mostly consists of FR4, PET, or Taconic TLX-0 with a minute mass of either copper, gold, or silver, the tag can be easily combusted and disposed of during biomass combustion. The novel features of this tag are the combination of hexagonal and spiral shape slots for maximum space utilization thereby achieving high RCS signatures along with high code density. All these properties of the proposed chipless RFID tag provide a pioneering pathway for a real-time biomass tracking application.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference37 articles.

1. 18. Amin, EM and Karmakar, NC (2012) Development of a low cost printable humidity sensor for chipless RFID technology, in 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 165–170.

2. 23. Preradovic, S and Karmakar, N (2010) Chipless RFID tag with integrated sensor, in Sensors, 2010 IEEE, pp. 1277–1281.

3. Miniaturized humidity and temperature sensing RFID enabled tags

4. Enhanced UHF RFID Sensor-Tag

5. RFID humidity sensor tag for low-cost applications;Ali;Applied Computational Electromagnetics Society Journal,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chipless RFID strain sensors: A review and performance analysis;Sensors and Actuators A: Physical;2024-10

2. Modeling and Research on Railway Balise Transmission System for Underwater Debris;Applied Sciences;2024-08-19

3. Trends and Challenges in AIoT Implementation for Smart Home, Smart Buildings, and Smart Cities in Cloud Platforms;Advances in Computational Intelligence and Robotics;2024-02-23

4. A Novel Dual-Polarized RFID-Based Chipless Tag for IoT Market;ICC 2023 - IEEE International Conference on Communications;2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3