Impact of dielectric substrates on chipless RFID tag performance

Author:

Ali AmjadORCID,Smartt Christopher,Im Jisun,Williams OrlaORCID,Lester Ed,Greedy Steve

Abstract

Abstract A five-slot hexagonal shape chipless RFID tag is designed, simulated, and manufactured on FR4 substrate. The designed tag's copper geometry was replicated on a wide range of dielectric substrate to quantify the impact on resonance quality factor (RQF) and resonating frequencies. The tag's performance was assessed in three configurations. First, a hexagonal shape tag's radar cross section (RCS) was studied over different dielectric substrates. The various dielectric substrate effects were investigated over the maximum read range, resonant frequencies and RQF. In the second evaluation, the physical geometry of the tag was adjusted to achieve the spectral signatures in 2–7 GHz frequency band with high RQF. In step three, the optimized tag geometry was manufactured on FR4, Roger Duroid 5880, and polyethylene naphthalate (PEN) substrates. Denford milling machine for PCB engraving and inkjet printing for silver nanoparticles deposition were used for tags manufacturing. During tag manufacturing, copper and silver were used as conducting materials for RCS backscattering. The tag RCS response was measured by vector network analyzer with bi-static antenna setup. The analysis of different dielectric substrate provides a pathway of designing a novel substrate by using various nanomaterials.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3