An applicator for high-power rock comminution using microwave technology in the megawatt range

Author:

Alekajbaf YasinORCID,Dancila DragosORCID

Abstract

Abstract The mining industry is heavily dependent on energy-intensive processes, such as rock breakage, which leads to significant operational costs. This paper explores microwave-assisted rock breakage as an innovative method to enhance the efficiency of comminution within the mining industry. It introduces a system that employs a Klystron microwave power source with a maximum output of 7.5 MW, using a $\mathrm{TM}_{010}$ single-mode cavity at 3 GHz, to channel energy inside a specially designed rock cavity. The paper emphasizes the importance of designing an efficient microwave cavity for this system, focusing on the cavity’s design and simulation. Through both simulated results (using HFSS software) and experimental observations, the study reveals the promising application of microwave technology in the field of mining. The simulated frequency response of the designed cavity (S11) is −22 dB, it demonstrates significant potential for reducing both energy consumption and associated costs. Additionally, the designed cavity is fabricated from aluminum and filled with polyether ether ketone material. The measured frequency response (S11) of the cavity at 3 GHz is −17 dB.

Publisher

Cambridge University Press (CUP)

Reference16 articles.

1. Microwave measurements of electromagnetic properties of materials;Krupka;Materials,2021

2. 12. Alekajbaf, Y , Coman, MG , Szaniawski, P and Dancila, D (2023) Quality monitoring of mineral and synthetic oils using a high Q-factor single-mode resonance cavity and Kajfez’ algorithm at 2.45 GHz. In Swedish Microwave Days 2023, Stockholm, Sweden.

3. An electro breakdown damage model for granite and simulation of deep drilling by high-voltage electropulse boring;Li;Shock and Vibration,2019

4. CRC Handbook of Chemistry and Physics

5. The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3);McNeal;Journal of Applied Physics,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3