Empirical path loss models for 5G wireless sensor network in coastal pebble/sand environments

Author:

Basyigit Ibrahim BahadirORCID

Abstract

Abstract Propagation modeling of small/big pebbles and air-dry/wet sand environments for wireless sensor networks has not been extensively studied in the 5G frequency band. This study is necessary for the proper coverage planning and efficient operation of wireless sensors in various applications such as monitoring summer sporting activities, and environmental/ground surveillance on coastal pebble/sand environments, or tracking pebble mobility and including the rescue of the flood-type avalanche in Gravel-Bed Rivers. In this study, empirical path loss models are proposed for wireless sensor networks in pebble/sand environments at two discrete frequencies, namely 3.5 and 4.2 GHz. The theoretical models and proposed models are compared to indicate the accuracy of proposed models in predicting the path loss in these environments. Additionally, R-squared and RMSE values of eight different generated models are calculated in the range of 0.931–0.877 and 2.284–2.837, respectively. These comparisons indicate that empirical model parameters have a significant effect on the path loss model.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference41 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing 5G IoT Connectivity for Path Loss Reduction through Ant Colony Optimization and Support Vector Regression;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. Design of Miniaturized Frequency Selective Rasorber Based on Complementary Bandpass FSS for 5G Applications;IEEE Transactions on Electromagnetic Compatibility;2024-04

3. Effects of Fire Plumes From Pine Needles on Small-Scale Fading in Radiowave Propagation;IEEE Transactions on Antennas and Propagation;2023-04

4. Development of a Web-Based Calculator to Simulate Link Budget for Mobile Communications Systems at Urban Settlements;Communications in Computer and Information Science;2023

5. Detection of Moving Targets by Passive Radar Using FM Signals on Moving Platforms;Tehnicki vjesnik - Technical Gazette;2022-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3