Abstract
AbstractAn integral equation-fast Fourier transform (IE-FFT) algorithm is applied to the electromagnetic solutions of the combined field integral equation (CFIE) for scattering problems by an arbitrary-shaped three-dimensional perfect electric conducting object. The IE-FFT with CFIE uses a Cartesian grid for known Green's function to considerably reduce memory storage and speed up CPU time for both matrix fill-in and matrix vector multiplication when used with a generalized minimal residual method. The uniform interpolation of the Green's function on an equally spaced Cartesian grid allows a global FFT for field interaction terms. However, the near interaction terms do not take care for the singularity of the Green's function and should be adequately corrected. The IE-FFT with CFIE does not always require a suitable preconditioner for electrically large problems. It is shown that the complexity of the IE-FFT with CFIE is found to be approximately O(N1.5) and O(N1.5log N) for memory and CPU time, respectively.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering