Abstract
Abstract
With the increasing demand for smarter antenna design in advanced technology applications, well-designed antennas have been an important factor in enhancing system performance. Most traditional antenna design requires multiple iterations and extensive testing to produce a final product. Machine learning (ML) algorithms have been used as an alternative to predict the optimal design parameters, but the outcome depends highly on the ML model efficiency. With recent development in machine learning algorithms and the availability of data for antenna design, we investigated different machine learning algorithms for optimizing the output strength of three basic antennae by analyzing the signal strength of the antenna for various antenna parameters. Different regression-based ML models were used to learn the behaviors and efficiency of three different antennas and to predict the output strength (S11) for different ranges of frequencies. The experiment compared and analyzed these ML regression algorithms for three different antennas: shot antenna, patch antenna, and bowtie antenna. In addition, the paper also provides comparison of ensemble ML models for performance analysis using the best three ML algorithms from the preliminary study. This study optimizes antenna parameters and quicker and smarter antenna design procedure using ML algorithms as compared to traditional design methods.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献