Rectenna panel design optimization for maximum RF power utilization

Author:

Daiya VinitaORCID,Ebenezer Jemimah,Jehadeesan R.

Abstract

AbstractNow-a-days, far-field wireless power transfer/energy harvesting is underutilized due to the unavailability of proper methodology to design efficient system for maximum radio frequency (RF) power utilization. For efficient utilization of far-field RF energy an array/grid of rectenna, i.e. rectenna panel is required to generate the power from wireless signal. To minimize the engineering design phase period (design trials), this paper mathematically derives and summarizes the approach required for optimum rectenna panel design based on power available in the environment, RF transmit source capability, receiver power requirement and the design cost. For maximum power interception through a rectenna panel, its design parameters such as -panel size, number of rectenna, rectenna arrangement pattern, and rectenna spacing has been optimized in our work. Based on the optimization required, we have proposed the compact grid pattern with heterogeneous rectenna spacing. It has been proved theoretically in this paper that if a hexagonal shape panel is designed by placement of rectenna at vertices of equilateral triangle (with side length governed by antenna aperture) then, it is capable of intercepting maximum RF energy available at its location with the least number of rectenna.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference35 articles.

1. IARC (2011) IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. International Agency for Research on Cancer, Press, 2008(May), pp. 1–6.

2. Mukherjee B , Patel P and Mukherjee J (2014b) Hemispherical dielectric resonator antenna loaded with a photonic band gap structure for wideband and high gain applications. 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014, (1), pp. 3–6.

3. An overview of the solar power satellite option

4. Potentials of an Adaptive Rectenna Circuit

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Far-field wireless power harvesting for inaccessible area wireless monitoring;International Journal of RF Technologies;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3