Modified RSSI Technique for the Localization of Passive UHF RFID Tags in LOS Channels

Author:

Duroc Y.,Andia Vera G.,Garcia Martin J. P.

Abstract

This paper presents a new approach for improving the localization of passive ultra high frequency radio frequency identification (RFID) tags in line-of-sight channels using a received signal strength indicator (RSSI) technique. In practice, the complex propagation in the indoor channels and also the variability of some parameters of the RFID equipment itself introduces significant amount of errors when the operation of localization carries out the RSSI technique. Indeed, as the calculation is based on a trilateration, the incomplete knowledge of the propagation and some parameters of RFID tags leads to estimate distances which are wrong, and therefore the localization cannot be correct. In order to overcome this drawback, the proposed method takes into account the presence of unknown parameters relying on a dichotomous algorithm which includes probabilistic parameters. The presented simulation results are in good agreement with the expected theoretical results. Experimental results show that the proposed method strongly increases the accuracy of the estimated position of tags. Compared to other approaches based on the improvement of the RSSI technique, this method does not require too much complexity in terms of materials (no need for specific architecture or reference tags) and processing (fast and simple algorithm).

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate and Automatic Detection of Oblique RFID-Enabled Objects in Mobile Manner;2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2019-12

2. INDOOR LOCALIZATION SYSTEMS FOR PASSIVE UHF RFID TAG BASED ON RSSI RADIO MAP DATABASE;Progress In Electromagnetics Research M;2019

3. Bibliography;Non-linearities in Passive RFID Systems;2018-01-19

4. RFID: A key technology for Humanity;Comptes Rendus Physique;2018-01

5. Application of Gbest-guided artificial bee colony algorithm to passive UHF RFID tag design;International Journal of Microwave and Wireless Technologies;2015-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3