Abstract
Abstract
Modern radar sensors are gaining more and more relevance for several industrial measurement applications. To achieve the required range resolution and measurement accuracy, the use of higher frequencies beyond 100 GHz is beneficiary. A commonly used signal generation concept in fully integrated radar transceivers is to use a fundamental oscillator with subsequent frequency multiplication. Depending on the overall system concept, this type of signal generation suffers from a fundamental feed-through signal which generates false targets in frequency modulated continuous wave operation. Additionally, those unwanted signal components radiated by the sensors might be problematic for legal conformity or electromagnetic (EM) interference compliance. This paper presents a novel concept for frequency filtering dielectric lens antennas, to suppress unwanted signal components at harmonic frequencies based on interference filtering effects. Besides the EM simulations to theoretically prove this concept, multiple prototypes of filtering lens antennas were fabricated by conventional mechanical and additive manufacturing. Using a self-developed, ultra-compact radar sensor, measurements were taken to compare the lens antenna prototypes in terms of filtering performance and how the material characteristics affect the filtering performance. Within these measurements, the successful suppression of false targets caused by fundamental feed-through signals is demonstrated.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献