Hybrid phase retrieval algorithm based on modified very fast simulated annealing

Author:

Xu Yueshu,Ye Qian,Meng Guoxiang

Abstract

AbstractThe Misell algorithm is one of the most widely used phase retrieval holography methods for large reflector antennas to measure surface deformation. However, it usually locks in a local minimum because it heads downhill from an initial estimation without any consideration whether it heads for a global minimum or not. The core problem of the Misell algorithm is to find an initial estimation near the global minimum to avoid local stagnation. To cope with the problem, we construct a hybrid Misell algorithm, named modified very fast simulated annealing (MVFSA)-Misell algorithm, to search for the global minimum with a high efficiency. The algorithm is based on the combination of the MVFSA algorithm and Misell algorithm. Firstly, the MVFSA is utilized to obtain a rough position near the global minimum in limited steps. Then, the Misell algorithm starts from the rough position to converge to the global minimum with high speed and accuracy. The convergence characteristic of the proposed algorithm was discussed in detail through digital simulation. Simulation results show that the algorithm can reach global minimum in a very short time. Unlike the traditional Misell algorithm, the hybrid algorithm is not influenced by initial phase estimation.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inversion of orbital-angular-momentum light field based on strongly scattering medium;2023 Opto-Electronics and Communications Conference (OECC);2023-07-02

2. Automated Configuration for Agile Software Environments;2022 IEEE 15th International Conference on Cloud Computing (CLOUD);2022-07

3. 相位恢复算法:原理、发展与应用(特邀);Infrared and Laser Engineering;2022

4. A new phase retrieval method using sequential phase modulations;Applied Physics B;2020-04-04

5. Complex and quaternionic optimization;Numerical Algebra, Control & Optimization;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3