Adrenal ablation as a treatment for hypertension: analyzing the dielectric properties of adrenal glands for microwave ablation technologies

Author:

Amin BilalORCID,Cappiello Grazia,Kraśny Marcin J.,Dunne Eoghan,Lowery Aoife,Dennedy Michael Conall,Prakash Punit,Elahi Adnan,O’Halloran Martin

Abstract

Abstract Adrenal gland-induced hypertension, also known as secondary hypertension, is a medical condition caused by an underlying adrenal pathology, most typically adrenocortical adenomas. Current clinical practices involve pharmacotherapy or surgical resection to treat adrenal gland diseases that cause hypertension. However, due to the limitations of these treatment options, microwave ablation (MWA) has emerged as a promising minimally invasive alternative. An accurate understanding of the dielectric properties of adrenal glands would support the further development and optimization of MWA technology for treating adrenal tumors. Only a few studies have examined the dielectric properties of both human and animal adrenal glands, and the sample sizes of these studies have been relatively small. Therefore, further dielectric data of human and animal adrenal glands are warranted. This paper presents the ex vivo dielectric properties of the ovine adrenal glands (medulla and cortex) and summarizes the published literature on dielectric data of adrenal glands from porcine, bovine, ovine, and human samples in the microwave frequency range to analyze the consistency and reliability of the reported data. The dielectric properties of the ovine adrenal glands (N = 8) were measured using an open-ended coaxial probe measurement technique at frequencies ranging from 0.5 to 8.5 GHz. This study also investigated the temperature-dependent dielectric properties of the ovine adrenal medulla ranging from 37 to 64°C at frequencies ranging from 0.5 to 8.5 GHz. The dielectric properties of the ovine adrenal medulla measured in this study were found to be consistent with the literature. Moreover, the review suggests that variations exist in the dielectric properties of the adrenal medulla and cortex among species. The study also found that the dielectric properties of the adrenal medulla decrease with increasing temperature, similar to other tissues for which temperature-dependent dielectric data have been reported. This summary of dielectric data of adrenal glands and the temperature-dependent dielectric properties of the ovine adrenal medulla will accelerate the development of MWA technologies for hypertension treatment.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3