A miniaturized directional antenna for microwave breast imaging applications

Author:

Mahmud Md Zulfiker,Islam Mohammad Tariqul,Rahman Md NaimurORCID,Alam Touhidul,Samsuzzaman Md

Abstract

A novel compact directional antenna with improved gain is proposed for microwave breast imaging (MBI) applications. The radiating fins are modified by etching several slots to make the antenna compact and enhance antenna performance in terms of bandwidth, gain, efficiency, and directivity. Several parameters are studied and optimized to frequency from 3.1 to 6.5 GHz, which is typically used in the breast imaging system. The electrical length of the antenna is 0.39λ × 0.46λ × 0.01λ at the lower frequency band. The result shows that the antenna exhibits −10 dB impedance bandwidth of 4.3 GHz (2.7–7 GHz) with directional radiation pattern. The peak gain of the proposed prototype is 7.8 dBi and fractional bandwidth is 92%. The time domain results show that the fidelity factor for face to face is 0.92 and for side by side is 0.62, which prove the directivity and lower distortion of the signal. The proposed prototype is successfully simulated, fabricated, and measured.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photonic crystal based hour glass patch antenna for the detection of breast cancer;Optical and Quantum Electronics;2024-03-25

2. Performance Analysis of SSRR in High-Speed Terahertz Antenna for Biomedical Applications;Advances in Wireless Technologies and Telecommunication;2023-06-30

3. Microwave Imaging with Modified Stack Type PIFA Antenna utilizing SAR Algorithm;2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON);2022-12-12

4. Design of a high-gain dual-band antipodal Vivaldi antenna array for 5G communications;International Journal of Microwave and Wireless Technologies;2021-12-09

5. A Fern Antipodal Vivaldi Antenna for Near-Field Microwave Imaging Medical Applications;IEEE Transactions on Antennas and Propagation;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3