A nondestructive leaf-disk assay for rapid diagnosis of weed resistance to multiple herbicides

Author:

Wu ChenxiORCID,Varanasi Vijaya,Perez-Jones Alejandro

Abstract

AbstractWeed resistance surveys that monitor the spread of resistant weeds have mainly been conducted through time-consuming, labor-intensive, and destructive greenhouse herbicide screens. As an alternative, we introduce here a nondestructive leaf-disk assay based on chlorophyll fluorescence (Fv/Fm values that measure photosynthetic efficiency) that allows the detection of resistance to both systemic and contact herbicides within ∼48 h. The current study validated the assay for detecting resistance to fomesafen, glyphosate, and dicamba in Palmer amaranth (Amaranthus palmeri S. Watson), waterhemp [Amaranthus tuberculatus (Moq.) Sauer], kochia [Bassia scoparia (L.) A.J. Scott], and goosegrass [Eleusine indica (L.) Gaertn.]. Negative correlation between Fv/Fm values and spray injury levels was observed in all herbicide–weed combinations at the discriminating doses, except for glyphosate in Amaranthus. The correlation coefficients were −0.41 for fomesafen (10 µM, P < 0.0001) in Amaranthus, −0.92 for glyphosate in E. indica (250 µM, P < 0.0001), and −0.44 for dicamba in B. scoparia (800 µM, P = 0.0023). At the population level, the assay clearly separated susceptible from highly resistant populations. However, the assay showed lower sensitivity in distinguishing populations of different resistance levels or separating populations with low resistance from susceptible populations. At the individual plant level, results from the leaf-disk assay and whole-plant spray tests were concordant in 85.5%, 92.3%, and 71.7% of the plants tested for fomesafen–Amaranthus, glyphosate–Eleusine, and dicamba–Bassia, respectively. The assay yielded 1% to 15% false-positive and 6% to 13% false-negative results across herbicides. The current study demonstrated that the leaf-disk assay is a useful tool to identify weed resistance. Optimization is needed to improve its sensitivities and expand its usage to more diverse herbicide–weed species combinations.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3