Abstract
AbstractFor any subfield $K\subseteq \mathbb{C}$, not contained in an imaginary quadratic extension of $\mathbb{Q}$, we construct conjugate varieties whose algebras of $K$-rational ($p,p$)-classes are not isomorphic. This compares to the Hodge conjecture which predicts isomorphisms when $K$ is contained in an imaginary quadratic extension of $\mathbb{Q}$; additionally, it shows that the complex Hodge structure on the complex cohomology algebra is not invariant under the Aut($\mathbb{C}$)-action on varieties. In our proofs, we find simply connected conjugate varieties whose multilinear intersection forms on $H^{2}(-,\mathbb{R})$ are not (weakly) isomorphic. Using these, we detect nonhomeomorphic conjugate varieties for any fundamental group and in any birational equivalence class of dimension $\geq $10.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference19 articles.
1. Hodge Theory and Complex Algebraic Geometry I
2. Absolute Galois acts faithfully on the components of the moduli space of surfaces: a Belyi-type theorem in higher dimension;Easton;Int. Math. Res. Not. IMRN,2007
3. The topology of conjugate varieties
4. Siegelsche Modulfunktionen
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献