s-Process Enriched Evolved Binaries in the Galaxy and the Magellanic Clouds

Author:

Menon MeghnaORCID,Kamath Devika,Mohorian Maksym,Van Winckel Hans,Ventura Paolo

Abstract

Abstract Post-asymptotic giant branch stars (post-AGB) in binary systems, with typical orbital periods between $\sim\!100$ to $\sim$ 1 000 days, result from a poorly understood interaction that terminates their precursory AGB phase. The majority of these binaries display a photospheric anomaly called ‘chemical depletion’, thought to arise from an interaction between the circumbinary disc and the post-AGB star, leading to the reaccretion of pure gas onto the star, devoid of refractory elements due to dust formation. In this paper, we focus on a subset of chemically peculiar binary post-AGBs in the Galaxy and the Magellanic Clouds (MCs). Our detailed stellar parameter and chemical abundance analysis utilising high-resolution optical spectra from VLT+UVES revealed that our targets span a $T_{\rm eff}$ of 4 900–7 250 K and [Fe/H] of −0.5 - −1.57 dex. Interestingly, these targets exhibit a carbon ([C/Fe] ranging from 0.5 - 1.0 dex, dependant on metallicity) and s-process enrichment ( $\textrm{[s/Fe]}\,\geq\!1$ dex) contrary to the commonly observed chemical depletion pattern. Using spectral energy distribution (SED) fitting and period–luminosity–colour (PLC) relation methods, we determine the luminosity of the targets (2 700–8 300 $\rm L_{\odot}$ ), which enables confirmation of their evolutionary phase and estimation of initial masses (as a function of metallicity) (1–2.5 $\textrm{M}_{\odot}$ ). In conjunction with predictions from dedicated ATON stellar evolutionary models, our results indicate a predominant intrinsic enrichment of carbon and s-process elements in our binary post-AGB targets. We qualitatively rule out extrinsic enrichment and inherited s-process enrichment from the host galaxy as plausible explanations for the observed overabundances. Our chemically peculiar subset of intrinsic carbon and s-process enriched binary post-AGBs also hints at potential variation in the efficiency of chemical depletion between stars with C-rich and O-rich circumbinary disc chemistries. However, critical observational studies of circumbinary disc chemistry, along with specific condensation temperature estimates in C-rich environments, are necessary to address gaps in our current understanding of disc-binary interactions inducing chemical depletion in binary post-AGB systems.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3