DeepGlow: An efficient neural network emulator of physical afterglow models for gamma-ray bursts and gravitational-wave events

Author:

Boersma Oliver M.ORCID,van Leeuwen JoeriORCID

Abstract

Abstract Gamma-ray bursts (GRBs) and double neutron star merger gravitational-wave events are followed by afterglows that shine from X-rays to radio, and these broadband transients are generally interpreted using analytical models. Such models are relatively fast to execute, and thus easily allow estimates of the energy and geometry parameters of the blast wave, through many trial-and-error model calculations. One problem, however, is that such analytical models do not capture the underlying physical processes as well as more realistic relativistic numerical hydrodynamic (RHD) simulations do. Ideally, those simulations are used for parameter estimation instead, but their computational cost makes this intractable. To this end, we present DeepGlow, a highly efficient neural network architecture trained to emulate a computationally costly RHD-based model of GRB afterglows, to within a few percent accuracy. As a first scientific application, we compare both the emulator and a different analytical model calibrated to RHD simulations, to estimate the parameters of a broadband GRB afterglow. We find consistent results between these two models, and also give further evidence for a stellar wind progenitor environment around this GRB source. DeepGlow fuses simulations that are otherwise too complex to execute over all parameters, to real broadband data of current and future GRB afterglows.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference49 articles.

1. The Shape of Spectral Breaks in Gamma‐Ray Burst Afterglows

2. Chornock, R. , et al. 2017, ApJ, 848, L19, publisher: American Astronomical Society

3. Kasim, M. F. , et al. 2021, MLST, 3, 015013, publisher: IOP Publishing

4. The Evolution of a Structured Relativistic Jet and Gamma‐Ray Burst Afterglow Light Curves

5. An Overview of Overfitting and its Solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3