Multi-layered characterisation of hot stellar systems with confidence

Author:

Chattopadhyay SouradeepORCID,Kawaler Steven D.ORCID,Maitra RanjanORCID

Abstract

Abstract Understanding the physical and evolutionary properties of Hot Stellar Systems (HSS) is a major challenge in astronomy. We studied the dataset on 13 456 HSS of Misgeld & Hilker (2011, MNRAS, 414, 3 699) that includes 12 763 candidate globular clusters using stellar mass ( $M_s$ ), effective radius ( $R_e$ ) and mass-to-luminosity ratio ( $M_s/L_\nu$ ), and found multi-layered homogeneous grouping among these stellar systems. Our methods elicited eight homogeneous ellipsoidal groups at the finest sub-group level. Some of these groups have high overlap and were merged through a multi-phased syncytial algorithm motivated from Almodóvar-Rivera & Maitra (2020, JMLR, 21, 1). Five groups were merged in the first phase, resulting in three complex-structured groups. Our algorithm determined further complex structure and permitted another merging phase, revealing two complex-structured groups at the highest level. A nonparametric bootstrap procedure was also used to estimate the confidence of each of our group assignments. These assignments generally had high confidence in classification, indicating great degree of certainty of the HSS assignments into our complex-structured groups. The physical and kinematic properties of the two groups were assessed in terms of $M_s$ , $R_e$ , surface density and $M_s/L_\nu$ . The first group consisted of older, smaller and less bright HSS while the second group consisted of brighter and younger HSS. Our analysis provides novel insight into the physical and evolutionary properties of HSS and also helps understand physical and evolutionary properties of candidate globular clusters. Further, the candidate globular clusters (GCs) are seen to have very high chance of really being GCs rather than dwarfs or dwarf ellipticals that are also indicated to be quite distinct from each other.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3