Modelling repetition in zDM: A single population of repeating fast radio bursts can explain CHIME data

Author:

James C.W.ORCID

Abstract

Abstract Regardless of whether or not all fast radio bursts (FRBs) repeat, those that do form a population with a distribution of rates. This work considers a power-law model of this population, with rate distribution $\Phi_r \sim R^{{\gamma_r}}$ between ${R_{\rm min}}$ and ${R_{\rm max}}$ . The zDM code is used to model the probability of detecting this population as either apparently once-off or repeat events as a function of redshift, z, and dispersion measure, DM. I demonstrate that in the nearby Universe, repeating sources can contribute significantly to the total burst rate. This causes an apparent deficit in the total number of observed sources (once-off and repeaters) relative to the distant Universe that will cause a bias in FRB population models. Thus instruments with long exposure times should explicitly take repetition into account when fitting the FRB population. I then fit data from The Canadian Hydrogen Intensity Mapping Experiment (CHIME). The relative number of repeat and apparently once-off FRBs, and their DM, declination, and burst rate distributions, can be well explained by 50–100% of CHIME single FRBs being due to repeaters, with ${R_{\rm max}} > 0.75$ d $^{-1}$ above $10^{39}$ erg, and ${{\gamma_r}} = -2.2_{-0.8}^{+0.6}$ . This result is surprisingly consistent with follow-up studies of FRBs detected by the Australian Square Kilometre Array Pathfinder (ASKAP). Thus the evidence suggests that CHIME and ASKAP view the same repeating FRB population, which is responsible not just for repeating FRBs, but the majority of apparently once-off bursts. For greater quantitative accuracy, non-Poissonian arrival times, second-order effects in the CHIME response, and a simultaneous fit to the total FRB population parameters, should be treated in more detail in future studies.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference89 articles.

1. Kolmogorov, A. 1933, G. Ist. Ital. Attuari. 4, 83

2. James, C. W. , Prochaska, J. X. , & Ghosh, E. M. 2021, zdm, https://zenodo.org/record/5213780#.YRxh5BMzZKA

3. ODNet: A Convolutional Neural Network for Asteroid Occultation Detection

4. Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3