When models fail: An introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy

Author:

Romero-Shaw Isobel M.ORCID,Thrane EricORCID,Lasky Paul D.ORCID

Abstract

Abstract Bayesian inference is a powerful tool in gravitational-wave astronomy. It enables us to deduce the properties of merging compact-object binaries and to determine how these mergers are distributed as a population according to mass, spin, and redshift. As key results are increasingly derived using Bayesian inference, there is increasing scrutiny on Bayesian methods. In this review, we discuss the phenomenon of model misspecification, in which results obtained with Bayesian inference are misleading because of deficiencies in the assumed model(s). Such deficiencies can impede our inferences of the true parameters describing physical systems. They can also reduce our ability to distinguish the ‘best fitting’ model: it can be misleading to say that Model A is preferred over Model B if both models are manifestly poor descriptions of reality. Broadly speaking, there are two ways in which models fail. Firstly, models that fail to adequately describe the data (either the signal or the noise) have misspecified likelihoods. Secondly, population models—designed, for example, to describe the distribution of black hole masses—may fail to adequately describe the true population due to a misspecified prior. We recommend tests and checks that are useful for spotting misspecified models using examples inspired by gravitational-wave astronomy. We include companion python notebooks to illustrate essential concepts.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference73 articles.

1. Gelman, A. , & Rohilla Shalizi, C. 2010, arXiv e-prints, p. arXiv:1006.3868

2. Venumadhav, T. , Zackay, B. , Roulet, J. , Dai, L. , & Zaldarriaga, M. 2019, PhRvD, 100, 023011

3. Andreon, S. , & Weaver, B. 2015 (1st edn.; Springer, Switzerland), p. 191–205, DOI: https://doi.org/10.1007/978-3-319-15287-5

4. Cannon, K. , Hanna, C. , & Peoples, J. 2015, arXiv e-prints, p. arXiv:1504.04632

5. Olsen, S. , Venumadhav, T. , Mushkin, J. , Roulet, J. , Zackay, B. , & Zaldarriaga, M. 2022, arXiv e-prints, p. arXiv:2201.02252

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3