Dynamically formed black hole binaries: In-cluster versus ejected mergers

Author:

Anagnostou O.ORCID,Trenti M.ORCID,Melatos A.

Abstract

Abstract The growing number of black hole binary (BHB) mergers detected by the Laser Interferometer Gravitational-Wave Observatory have the potential to enable an unprecedented characterisation of the physical processes and astrophysical conditions that govern the formation of compact binaries. In this paper, we focus on investigating the dynamical formation of BHBs in dense star clusters through a state-of-the-art set of 58 direct N-body simulations with N $\leqslant200\,000$ particles which include stellar evolution, gravitational braking, orbital decay through gravitational radiation, and galactic tidal interactions. The simulations encompass a range of initial conditions representing typical young globular clusters, including the presence of primordial binaries. The systems are simulated for $\sim 12$ Gyr. The dataset yields 117 BHB gravitational wave (GW) events, with 97 binaries merging within their host cluster and 20 merging after having been ejected. Only 8% of all ejected BHBs merge within the age of the Universe. Systems in this merging subset tend to have smaller separations and larger eccentricities, as this combination of parameters results in greater emission of gravitational radiation. We confirm known trends from Monte Carlo simulations, such as the anti-correlation between the mass of the binary and age of the cluster. In addition, we highlight for the first time a difference at low values of the mass ratio distribution between in-cluster and ejected mergers. However, the results depend on assumptions on the strength of GW recoils, thus in-cluster mergers cannot be ruled out at a significant level of confidence. A more substantial catalogue of BHB mergers and a more extensive library of N-body simulations are needed to constrain the origin of the observed events.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference125 articles.

1. No energy equipartition in globular clusters

2. Predictions for triple stars with and without a pulsar in star clusters

3. Star clusters with primordial binaries - II. Dynamical evolution of models in a tidal field

4. The LIGO Scientific Collaboration, et al. 2018, arXiv e-prints, p. arXiv:1811.12907

5. The LIGO Scientific Collaboration The Virgo Collaboration, 2012, arXiv e-prints, p. arXiv:1203.2674

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3