The GLINT South testbed for nulling interferometry with photonics: Design and on-sky results at the Anglo-Australian Telescope

Author:

Lagadec T.ORCID,Norris B.,Gross S.,Arriola A.,Gretzinger T.ORCID,Cvetojevic N.ORCID,Martinod M.-A.ORCID,Jovanovic N.ORCID,Withford M.,Tuthill P.

Abstract

Abstract In 1978, Bracewell suggested the technique of nulling interferometry to directly image exoplanets which would enable characterisation of their surfaces, atmospheres, weather, and possibly determine their capacity to host life. The contrast needed to discriminate starlight reflected by a terrestrial-type planet from the glare of its host star lies at or beyond a forbidding $10^{-10}$ for an exo-Earth in the habitable zone around a Sun-like star at near-infrared wavelengths, necessitating instrumentation with extremely precise control of the light. Guided Light Interferometric Nulling Technology (GLINT) is a testbed for new photonic devices conceived to overcome the challenges posed by nulling interferometry. At its heart, GLINT employs a single-mode nulling photonic chip fabricated by direct-write technology to coherently combine starlight from an arbitrarily large telescope at 1 550 nm. It operates in combination with an actuated segmented mirror in a closed-loop control system, to produce and sustain a deep null throughout observations. The GLINT South prototype interfaces the 3.9-m Anglo-Australian Telescope and was tested on a sample of bright Mira variable stars. Successful and continuous starlight injection into the photonic chip was achieved. A statistical model of the data was constructed, enabling a data reduction algorithm to retrieve contrast ratios of about $10^{-3}$ . As a byproduct of this analysis, stellar angular diameters that were below the telescope diffraction limit ( $\sim$ 100 mas) were recovered with 1 $\sigma$ accuracy and shown to be in agreement with literature values despite working in the seeing-limited regime. GLINT South serves as a demonstration of the capability of direct-write photonic technology for achieving coherent, stable nulling of starlight, which will encourage further technological developments towards the goal of directly imaging exoplanets with future large ground based and space telescopes.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3