Variational inference as an alternative to MCMC for parameter estimation and model selection

Author:

Gunapati Geetakrishnasai,Jain Anirudh,Srijith P. K.,Desai ShantanuORCID

Abstract

AbstractMost applications of Bayesian Inference for parameter estimation and model selection in astrophysics involve the use of Monte Carlo techniques such as Markov Chain Monte Carlo (MCMC) and nested sampling. However, these techniques are time-consuming and their convergence to the posterior could be difficult to determine. In this study, we advocate variational inference as an alternative to solve the above problems, and demonstrate its usefulness for parameter estimation and model selection in astrophysics. Variational inference converts the inference problem into an optimisation problem by approximating the posterior from a known family of distributions and using Kullback–Leibler divergence to characterise the difference. It takes advantage of fast optimisation techniques, which make it ideal to deal with large datasets and makes it trivial to parallelise on a multicore platform. We also derive a new approximate evidence estimation based on variational posterior, and importance sampling technique called posterior-weighted importance sampling for the calculation of evidence, which is useful to perform Bayesian model selection. As a proof of principle, we apply variational inference to five different problems in astrophysics, where Monte Carlo techniques were previously used. These include assessment of significance of annual modulation in the COSINE-100 dark matter experiment, measuring exoplanet orbital parameters from radial velocity data, tests of periodicities in measurements of Newton’s constantG, assessing the significance of a turnover in the spectral lag data of GRB 160625B, and estimating the mass of a galaxy cluster using weak gravitational lensing. We find that variational inference is much faster than MCMC and nested sampling techniques for most of these problems while providing competitive results. All our analysis codes have been made publicly available.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference84 articles.

1. Brewer, B. J. 2014, arXiv e-prints, p. arXiv:1411.3921

2. Desai, S. , et al. 2004, PhRvD, 70, 083523

3. An independent assessment of significance of annual modulation in COSINE-100 data

4. Data Analysis Recipes: Using Markov Chain Monte Carlo

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3