New results for FBS late-type stars using Gaia EDR3 data

Author:

Gigoyan Kamo S.ORCID,Lebzelter T.,Kostandyan G. R.,Karapetyan E.,Baghdasaryan D.,Gigoyan K. K.

Abstract

Abstract We study in this paper bright late-type giants found in the First Byurakan Survey (FBS) data base. Phase dependent light-curves from large sky area variability data bases such as Catalina Sky Survey (CSS) and All-Sky Automated Survey for Supernovae (ASAS-SN), and the early installment of the third Gaia data release (Gaia EDR3) photometric and astrometric data have been used to characterize our sample of 1 100 M-type giants and 130 C-type stars found at high latitudes. Gaia radial velocities (RV) are available for 134 and luminosities for 158 stars out of 1 100. We show the behaviour of our sample stars in a Gaia color–absolute magnitude diagram (CaMD), the Gaia-2MASS-diagram from Lebzelter et al. with some alternative versions. In this way we explore the potential of these diagrams and their combination for the analysis and interpretation of datasets of LPVs. We show the possibility to classify stars into M- and C-types and to identify the mass of the bulk of the sample stars.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference34 articles.

1. Luo, A.-L , Zhao, Y,-H , Zhao, G. , et al. 2019, VizieR Online Data Catalog, V/164

2. Pastorelli, G. , Marigo, P. , Girardi, L. , et al. 2020, MNRAS, 498, 3283

3. Soszynski, I. , Udalski, A. , & Kubiak, M. , et al. 2005, A&A, 55, 331

4. REVISED AND UPDATED CATALOGUE OF THE FIRST BYURAKAN SURVEY BLUE STELLAR OBJECTS

5. Kochanek, C. S. , Shappee, B. J. , Stenek, K. Z. , et al. 2017, PASP, 119, 923

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3