Megahertz emission of massive early-type stars in the Cygnus region

Author:

Benaglia P.ORCID,De Becker M.,Ishwara-Chandra C. H.,Intema H. T.ORCID,Isequilla N. L.

Abstract

Abstract Massive, early-type stars have been detected as radio sources for many decades. Their thermal winds radiate free–free continuum and in binary systems hosting a colliding-wind region, non-thermal emission has also been detected. To date, the most abundant data have been collected from frequencies higher than 1 GHz. We present here the results obtained from observations at 325 and 610 MHz, carried out with the Giant Metrewave Radio Telescope, of all known Wolf-Rayet and O-type stars encompassed in area of $\sim$ 15 sq degrees centred on the Cygnus region. We report on the detection of 11 massive stars, including both Wolf-Rayet and O-type systems. The measured flux densities at decimeter wavelengths allowed us to study the radio spectrum of the binary systems and to propose a consistent interpretation in terms of physical processes affecting the wide-band radio emission from these objects. WR 140 was detected at 610 MHz, but not at 325 MHz, very likely because of the strong impact of free–free absorption (FFA). We also report—for the first time—on the detection of a colliding-wind binary system down to 150 MHz, pertaining to the system of WR 146, making use of complementary information extracted from the Tata Institute of Fundamental Research GMRT Sky Survey. Its spectral energy distribution clearly shows the turnover at a frequency of about 600 MHz, that we interpret to be due to FFA. Finally, we report on the identification of two additional particle-accelerating colliding-wind binaries, namely Cyg OB2 12 and ALS 15108 AB.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quest for the Upcoming Periastron Passage of an Episodic Dust Maker and Particle-accelerating Colliding-wind Binary: WR 125;The Astronomical Journal;2021-11-23

2. Radio modelling of the brightest and most luminous non-thermal colliding-wind binary Apep;Monthly Notices of the Royal Astronomical Society;2021-10-18

3. Particle acceleration and non-thermal emission in colliding-wind binary systems;Monthly Notices of the Royal Astronomical Society;2021-04-22

4. Strong low-frequency radio flaring from Cygnus X-3 observed with LOFAR;Monthly Notices of the Royal Astronomical Society;2021-03-17

5. High-sensitivity radio study of the non-thermal stellar bow shock EB27;Monthly Notices of the Royal Astronomical Society;2021-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3