Systematic Review and Evaluation of Mathematical Attack Models of Human Inhalational Anthrax for Supporting Public Health Decision Making and Response

Author:

Chen XinORCID,Bahl Prateek,de Silva Charitha,Heslop David,Doolan Con,Lim Samsung,MacIntyre C. Raina

Abstract

AbstractBackground:Anthrax is a potential biological weapon and can be used in an air-borne or mail attack, such as in the attack in the United States in 2001. Planning for such an event requires the best available science. Since large-scale experiments are not feasible, mathematical modelling is a crucial tool to inform planning. The aim of this study is to systematically review and evaluate the approaches to mathematical modelling of inhalational anthrax attack to support public health decision making and response.Methods:A systematic review of inhalational anthrax attack models was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The models were reviewed based on a set of defined criteria, including the inclusion of atmospheric dispersion component and capacity for real-time decision support.Results:Of 13 mathematical modelling studies of human inhalational anthrax attacks, there were six studies that took atmospheric dispersion of anthrax spores into account. Further, only two modelling studies had potential utility for real-time decision support, and only one model was validated using real data.Conclusion:The limited modelling studies available use widely varying methods, assumptions, and data. Estimation of attack size using different models may be quite different, and is likely to be under-estimated by models which do not consider weather conditions. Validation with available data is crucial and may improve models. Further, there is a need for both complex models that can provide accurate atmospheric dispersion modelling, as well as for simpler modelling tools that provide real-time decision support for epidemic response.

Publisher

Cambridge University Press (CUP)

Subject

Emergency Nursing,Emergency Medicine

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3