A Retrospective Application of the Arbon and Hartman Models to the Union Cycliste International Mountain Bike World Cup

Author:

Tucker HeatherORCID,Duncan Timothy,Craven Paul A.,Goode Christopher,Scheidler James

Abstract

AbstractIntroduction:Outdoor activities have accelerated in the past several years. The authors were tasked with providing medical care for the Union Cycliste International (UCI) mountain biking World Cup in Snowshoe, West Virginia (USA) in September 2021. The Hartman and Arbon models were designed to predict patient presentation and hospital transport rates as well as needed medical resources at urban mass-gathering events. However, there is a lack of standardized methods to predict injury, illness, and insult severity at rural mass gatherings.Study Objective:This study aimed to determine whether the Arbon model would predict, within 10%, the number of patient presentations to be expected and to determine if the event classification provided by the Hartman model would adequately predict resources needed during the event.Methods:Race data were collected from UCI event officials and injury data were collected from participants at time of presentation for medical care. Predicted presentation and transport rates were calculated using the Arbon model, which was then compared to the actual observed presentation rates. Furthermore, the event classification provided by the Hartman model was compared to the resources utilized during the event.Results:During the event, 34 patients presented for medical care and eight patients required some level of transport to a medical facility. The Arbon predictive model for the 2021 event yielded 30.3 expected patient presentations. There were 34 total patient presentations during the 2021 race, approximately 11% more than predicted. The Hartman model yielded a score of four. Based on this score, this race would be classified as an “intermediate” event, requiring multiple Advanced Life Support (ALS) and Basic Life Support (BLS) personnel and transport units.Conclusion:The Arbon model provided a predicted patient presentation rate within reasonable error to allow for effective pre-event planning and resource allocation with only a four patient presentation difference from the actual data. While the Arbon model under-predicted patient presentations, the Hartman model under-estimated resources needed due to the high-risk nature of downhill cycling. The events staffed required physician skills and air medical services to safely care for patients. Further evaluation of rural events will be needed to determine if there is a generalized need for physician presence at smaller events with inherently risky activities, or if this recurring cycling event is an outlier.

Publisher

Cambridge University Press (CUP)

Subject

Emergency Nursing,Emergency Medicine

Reference9 articles.

1. 1. 2021 Outdoor Participation Trends Report. Outdoor Industry Association Website. https://outdoorindustry.org/resource/2021-outdoor-participation-trends-report/. Accessed February 22, 2023.

2. Predicting resource use at mass gatherings using a simplified stratification scoring model

3. Lesson on mass gatherings learned from the 2019 Union Cycliste International mountain biking World Cup;Craven;Cureus.,2021

4. Extreme event medicine: considerations for the organisation of out-of-hospital care during obstacle, adventure and endurance competitions

5. Mass Gathering Medicine: A Predictive Model for Patient Presentation and Transport Rates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3