Novel Negative Pressure Helmet Reduces Aerosolized Particles in a Simulated Prehospital Setting

Author:

Hunt NathanielORCID,Masiewicz Spencer,Herbert Logan,Bassin Benjamin,Brent Christine,Haas Nathan L.,Tiba Mohamad Hakam,Lillemoen Jon,Lowell Mark J.,Lott Isabel,Basinger Matthew,Smith Graham,Ward Kevin R.

Abstract

AbstractBackground/Objective:The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of prehospital providers caring for patients. Reports have shown increased rates of Emergency Medical Services (EMS) provider infection with COVID-19 after patient care exposure, especially while utilizing aerosol-generating procedures (AGPs). Given the increased risk and rising call volumes for AGP-necessitating complaints, development of novel devices for the protection of EMS clinicians is of great importance.Drawn from the concept of the powered air purifying respirator (PAPR), the AerosolVE helmet creates a personal negative pressure space to contain aerosolized infectious particles produced by patients, making the cabin of an EMS vehicle safer for providers. The helmet was developed initially for use in hospitals and could be of significant use in the prehospital setting. The objective of this study was to determine the efficacy and safety of the helmet in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization.Methods:Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, a medical helicopter, and a medical jet. Sodium chloride particles were used to simulate infectious particles, and particle counts were obtained in numerous locations close to the helmet and around the patient compartment. Counts near the helmet were compared to ambient air with and without use of AGPs (non-rebreather mask [NRB], continuous positive airway pressure mask [CPAP], and high-flow nasal cannula [HFNC]).Results:Without the helmet fan on, the particle generator alone and with all AGPs produced particle counts inside the helmet significantly higher than ambient particle counts. With the fan on, there was no significant difference in particle counts around the helmet compared to baseline ambient particle counts. Particle counts at the filter exit averaged less than one despite markedly higher particle counts inside the helmet.Conclusion:Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance. The AerosolVE helmet demonstrated efficacy in creating a negative pressure environment and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.

Publisher

Cambridge University Press (CUP)

Subject

Emergency Nursing,Emergency Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3