Rice cultivar response to sublethal concentrations of glyphosate and paraquat late in the season

Author:

McCoy JustinORCID,Golden Bobby,Bond Jason,Dodds Darrin,Bararpour Taghi,Gore Jeff

Abstract

AbstractDifferential tolerance may be observed among rice cultivars with desiccant exposure events during rice reproduction and ripening. Five field studies were established at the Mississippi State University Delta Research and Extension Center in Stoneville, MS, to determine the effects of exposure to sublethal concentrations of common desiccants across multiple rice cultivars. Rice cultivars in the study were ‘CLXL745’, ‘XL753’, ‘CL163’, ‘Rex’, and ‘Jupiter’. Desiccant treatments included no desiccant, paraquat, or glyphosate and were applied at the 50% heading growth stage respective to cultivar. Differential injury estimates among cultivars and desiccant treatments was observed when glyphosate or paraquat was applied at 50% heading. Injury from glyphosate at 50% heading was nondetectable across all cultivars. However, injury following paraquat applications was >7% across all rating intervals and cultivars. Hybrid cultivars exhibited less injury with paraquat applications than the inbred cultivars in the study. Rice following exposure to glyphosate or paraquat at 50% heading growth stage produced rough rice grain yield decreases ranging from 0% to 20% and 9% to 21%, respectively. Rough rice grain yield decreases were observed across all cultivars following paraquat exposure, and all inbred cultivars following glyphosate exposure. Across desiccant treatment, head rice yield was reduced in three of five cultivars in the study. When pooled across cultivar, paraquat applications cause a head rice yield reduction of 10%, whereas rice yield following glyphosate application remained >95%. Although differential tolerance among cultivars to paraquat or glyphosate exposure was observed, impacts on grain quality coupled with yield reductions suggests extreme rice sensitivity to exposure to sublethal concentrations of these desiccants at the 50% heading growth stage.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3