Functionality and efficacy of Franklin Robotics’ Tertill™ robotic weeder

Author:

Sanchez JohnnyORCID,Gallandt Eric R.ORCID

Abstract

AbstractAgricultural weeds remain an important production constraint, with labor shortages and a lack of new herbicide options in recent decades making the problem even more acute. Robotic weeding machines are a possible solution to these increasingly intractable weed problems. Franklin Robotics’ Tertill is an autonomous weeding robot designed for home gardeners that relies on a minimalistic design to be cost-effective. The objectives of this study were to investigate the ability of the Tertill to control broadleaf and grass weeds, and based on early observations, experiments were conducted with and without its string-trimmer–like weeding implement. Tertill demonstrated high weed-control efficacy, supporting its utility as a tool for home gardeners. Weeds were best controlled by the combined effect of soil disturbance caused by the action of the robot’s wheels and the actuation of the string trimmer. Despite the regrowth potential of an annual grass due to its meristem location, Tertill maintained low densities of millet in an experimental arena. The simple and effective design of the Tertill may offer insights to inform future development of farm-scale weeding robots. Weed density, emergence periodicity, robot working rate, and robotic weeding mechanisms are important design criteria regardless of the technology used for plant detection.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference35 articles.

1. An Evaluation of Two Novel Cultivation Tools

2. Naïo, Technologies (2020) Dino’s brand new mechanical weeding service: WAAS! https://www.naio-techologies.com. Accessed: June 11, 2020

3. A model for prediction of yield response in weed harrowing

4. Organic farmer knowledge and perceptions are associated with on-farm weed seedbank densities in northern New England. Weed;Jabbour;Sci.,2014

5. Agbots: Weeding a field with a team of autonomous robots

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3