Flue-cured tobacco tolerance to S-metolachlor

Author:

Clapp Andrew M.,Vann Matthew C.ORCID,Cahoon Charles W.,Jordan David L.,Fisher Loren R.,Inman Matthew D.

Abstract

AbstractCurrently, there are seven herbicides labeled for U.S. tobacco production; however, additional modes of action are greatly needed in order to reduce the risk of herbicide resistance. Field experiments were conducted at five locations during the 2017 and 2018 growing seasons to evaluate flue-cured tobacco tolerance to S-metolachlor applied pretransplanting incorporated (PTI) and pretransplanting (PRETR) at 1.07 (1×) and 2.14 (2×) kg ai ha−1. Severe injury was observed 6 wk after transplanting at the Whiteville environment in 2017 when S-metolachlor was applied PTI. End-of-season plant heights from PTI treatments at Whiteville were likewise reduced by 9% to 29% compared with nontreated controls, although cured leaf yield and value were reduced only when S-metolachlor was applied PTI at the 2× rate. Severe growth reduction was also observed at the Kinston location in 2018 where S-metolachlor was applied at the 2× rate. End-of-season plant heights were reduced 11% (PTI, 2×) and 20% (PRETR, 2×) compared with nontreated control plants. Cured leaf yield was reduced in Kinston when S-metolachlor was applied PRETR at the 2× rate; however, treatments did not impact cured leaf quality or value. Visual injury and reductions in stalk height, yield, quality, and value were not observed at the other three locations. Ultimately, it appears that injury potential from S-metolachlor is promoted by coarse soil texture and high early-season precipitation close to transplanting, both of which were documented at the Whiteville and Kinston locations. To reduce plant injury and the negative impacts to leaf yield and value, application rates lower than 1.07 kg ha−1 may be required in these scenarios.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3