Flowering leafy spurge (Euphorbia esula) detection using unmanned aerial vehicle imagery in biological control sites: Impacts of flight height, flight time and detection method

Author:

Yang XiaohuiORCID,Smith Anne M.,Bourchier Robert S.,Hodge Kim,Ostrander Dustin

Abstract

AbstractLeafy spurge, a noxious perennial weed, is a major threat to the prairie ecosystem in North America. Strategic planning to control leafy spurge requires monitoring its spatial distribution and spread. The ability to detect flowering leafy spurge at two biological control sites in southern Saskatchewan, Canada, was investigated using an unmanned aerial vehicle (UAV) system. Three flight missions were conducted on June 30, 2016, during the leafy spurge flowering period. Imagery was acquired at four flight heights and one or two acquisition times, depending on the site. The sites were reflown on June 28, 2017, to evaluate the change in flowering leafy spurge over time. Mixture tuned matched filtering (MTMF) and hue, intensity, and saturation (HIS) threshold analyses were used to determine flowering leafy spurge cover. Flight height of 30 m was optimal; the strongest relationships between UAV and ground estimates of leafy spurge cover (r2 = 0.76 to 0.90; normalized root mean square error [NRMSE] = 0.10 to 0.13) and stem density (r2 = 0.72 to 0.75) were observed. Detection was not significantly affected by the image analysis method (P > 0.05). Flowering leafy spurge cover estimates were similar using HIS (1.9% to 14.8%) and MTMF (2.1% to 10.3%) and agreed with the ground estimates (using HIS: r2 = 0.64 to 0.93, NRMSE = 0.08 to 0.25; using MTMF: r2 = 0.64 to 0.90, NRMSE = 0.10 to 0.27). The reduction in flowering leafy spurge cover between 2016 and 2017 detected using UAV images and HIS (8.1% at site 1 and 2.7% at site 2) was consistent with that based on ground digital photographs (10% at site 1 and 1.8% at site 2). UAV imagery is a useful tool for accurately detecting flowering leafy spurge and could be used for routine monitoring purposes in a biological control program.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3