Intrinsic features of flow past three square prisms in side-by-side arrangement

Author:

Zheng Qinmin,Alam Md. MahbubORCID

Abstract

An investigation on the flow around three side-by-side square prisms can provide a better understanding of complicated flow physics associated with multiple, closely spaced structures in which more than one gap flow is involved. In this paper, the flow around three side-by-side square prisms at a Reynolds number $Re=150$ is studied systematically at $L/W=1.1{-}9.0$, where $L$ is the prism centre-to-centre spacing and $W$ is the prism width. Five distinct flow structures and their ranges are identified, viz. base-bleed flow ($L/W<1.4$), flip-flopping flow $(1.4<L/W<2.1)$, symmetrically biased beat flow $(2.1<L/W<2.6)$, non-biased beat flow $(2.6<L/W<7.25)$ and weak interaction flow $(7.25<L/W<9.0)$. Physical aspects of each flow regime, such as vortex structures, vortex dynamics, gap-flow behaviours, shedding frequencies and fluid forces, are discussed in detail. A secondary (beat) frequency other than the Strouhal frequency (primary frequency) is observed in the symmetrically biased and non-biased beat flows, associated with the beat-like modulation in $C_{L}$-peak or amplitude, where $C_{L}$ is the lift force coefficient. Here we reveal the generic and intrinsic origin of the secondary frequency, establishing its connections with the phase lag between the two shear-layer sheddings from the two sides of a gap. When the two sheddings are in phase, no viscous force acts at the interface (i.e. at the centreline of the gap) of the two sheddings, resulting in the largest fluctuations in streamwise momentum, streamwise velocity and pressure; the maximum $C_{L}$ amplitude thus features the in-phase shedding. Conversely, when the two sheddings are antiphase, a viscous force exists at the interface of the two sheddings and restricts the momentum fluctuation through the gap, yielding a minimum $C_{L}$ amplitude. When the phase relationship between the two sheddings changes from in phase to antiphase, the extra viscous force acting at the interface becomes larger and causes the $C_{L}$ amplitude to change from a maximum to a minimum.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3