Droplet deformation and heat transfer in isotropic turbulence

Author:

Albernaz Daniel L.ORCID,Do-Quang M.,Hermanson J. C.,Amberg G.

Abstract

The heat and mass transfer of deformable droplets in turbulent flows is crucial to a wide range of applications, such as cloud dynamics and internal combustion engines. This study investigates a single droplet undergoing phase change in isotropic turbulence using numerical simulations with a hybrid lattice Boltzmann scheme. Phase separation is controlled by a non-ideal equation of state and density contrast is taken into consideration. Droplet deformation is caused by pressure and shear stress at the droplet interface. The statistics of thermodynamic variables are quantified and averaged over both the liquid and vapour phases. The occurrence of evaporation and condensation is correlated to temperature fluctuations, surface tension variation and turbulence intensity. The temporal spectra of droplet deformations are analysed and related to the droplet surface area. Different modes of oscillation are clearly identified from the deformation power spectrum for low Taylor Reynolds number $Re_{\unicode[STIX]{x1D706}}$, whereas nonlinearities are produced with the increase of $Re_{\unicode[STIX]{x1D706}}$, as intermediate frequencies are seen to overlap. As an outcome, a continuous spectrum is observed, which shows a decrease in the power spectrum that scales as ${\sim}f^{-3}$. Correlations between the droplet Weber number, deformation parameter, fluctuations of the droplet volume and thermodynamic variables are also developed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

1. Lattice Boltzmann equation method in electrohydrodynamic problems

2. Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection;Albernaz;Phys. Rev. E,2015

3. Thermodynamic consistency of liquid–gas lattice Boltzmann simulations;Wagner;Phys. Rev. E,2006

4. Multiple-relaxation-time lattice Boltzmann models in three-dimensions;d’Humieres;Proc. R. Soc. Lond. A,2002

5. Simulation of a suspended droplet under evaporation with Marangoni effects

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3