Nonlinear phase-resolved reconstruction of irregular water waves

Author:

Qi Yusheng,Wu Guangyu,Liu YumingORCID,Kim Moo-Hyun,Yue Dick K. P.ORCID

Abstract

We develop and validate a high-order reconstruction (HOR) method for the phase-resolved reconstruction of a nonlinear wave field given a set of wave measurements. HOR optimizes the amplitude and phase of $L$ free wave components of the wave field, accounting for nonlinear wave interactions up to order $M$ in the evolution, to obtain a wave field that minimizes the reconstruction error between the reconstructed wave field and the given measurements. For a given reconstruction tolerance, $L$ and $M$ are provided in the HOR scheme itself. To demonstrate the validity and efficacy of HOR, we perform extensive tests of general two- and three-dimensional wave fields specified by theoretical Stokes waves, nonlinear simulations and physical wave fields in tank experiments which we conduct. The necessary $L$, for general broad-banded wave fields, is shown to be substantially less than the free and locked modes needed for the nonlinear evolution. We find that, even for relatively small wave steepness, the inclusion of high-order effects in HOR is important for prediction of wave kinematics not in the measurements. For all the cases we consider, HOR converges to the underlying wave field within a nonlinear spatial-temporal predictable zone ${\mathcal{P}}_{NL}$ which depends on the measurements and wave nonlinearity. For infinitesimal waves, ${\mathcal{P}}_{NL}$ matches the linear predictable zone ${\mathcal{P}}_{L}$, verifying the analytic solution presented in Qi et al. (Wave Motion, vol. 77, 2018, pp. 195–213). With increasing wave nonlinearity, we find that ${\mathcal{P}}_{NL}$ contains and is generally greater than ${\mathcal{P}}_{L}$. Thus ${\mathcal{P}}_{L}$ provides a (conservative) estimate of ${\mathcal{P}}_{NL}$ when the underlying wave field is not known.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. On the measurement of directional wave spectra

2. Wu, G. 2004 Direct simulation and deterministic prediction of large-scale nonlinear ocean wave-field. PhD thesis, Massachusetts Institute of Technology.

3. The role of nonlinearity in inverse problems

4. Surface wave predictions in weakly nonlinear directional seas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3