Abstract
Cavitation bubbles are nucleated at a high repetition rate in water by delivering a pulsed laser through a fibre optic. Continuous high-frequency cavitation drives a stream away from the fibre tip. Using high-speed photography and particle image velocimetry, the stream is characterised as a synthetic jet, generated by trains of vortices induced by non-spherical bubble collapse. At low laser power, the bubbles collapse before the arrival of a subsequent laser pulse. Yet, by increasing the laser power, a system of bubbles is formed which leads to complex bubble–bubble interactions. The synthetic jet is observed regardless of the bubble formation regime, demonstrating the stability of the phenomenon. Synthetic jet generation by repetitive bubble collapse extends the well-studied acoustic streaming from small-amplitude bubble oscillations.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献