Direct numerical simulation of open-channel flow over a fully rough wall at moderate relative submergence

Author:

Mazzuoli MarcoORCID,Uhlmann MarkusORCID

Abstract

Direct numerical simulation of open-channel flow over a bed of spheres arranged in a regular pattern has been carried out at bulk Reynolds number and roughness Reynolds number (based on sphere diameter) of approximately 6900 and 120, respectively, for which the flow regime is fully rough. The open-channel height was approximately 5.5 times the diameter of the spheres. Extending the results obtained by Chan-Braun et al. (J. Fluid Mech., vol. 684, 2011, pp. 441–474) for an open-channel flow in the transitionally rough regime, the present purpose is to show how the flow structure changes as the fully rough regime is attained and, for the first time, to enable a direct comparison with experimental observations. Different statistical tools were used to investigate the flow field in the roughness sublayer and in the logarithmic region. The results indicate that, in the vicinity of the roughness elements, the average flow field is affected both by Reynolds number effects and by the geometrical features of the roughness, while at larger wall distances this is not the case, and roughness concepts can be applied. Thus, the roughness function is computed which in the present set-up can be expected to depend on the relative submergence. The flow–roughness interaction occurs mostly in the region above the virtual origin of the velocity profile, and the effect of form-induced velocity fluctuations is maximum at the level of sphere crests. In particular, the root mean square of fluctuations about the streamwise component of the average velocity field reflects the geometry of the spheres in the roughness sublayer and attains a maximum value just above the roughness elements. The latter is significantly weakened and shifted towards larger wall distances as compared to the transitionally rough regime or the case of a smooth wall. The spanwise length scale of turbulent velocity fluctuations in the vicinity of the sphere crests shows the same dependence on the distance from the wall as that observed over a smooth wall, and both vary with Reynolds number in a similar fashion. Moreover, the hydrodynamic force and torque experienced by the roughness elements are investigated and the footprint left by vortex structures on the stress acting on the sphere surface is observed. Finally, the possibility either to adopt an analogy between the hydrodynamic forces associated with the interaction of turbulent structures with a flat smooth wall or with the surface of the spheres is also discussed, distinguishing the skin-friction from the form-drag contributions both in the transitionally rough and in the fully rough regimes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3