Gas slip flow in a fracture: local Reynolds equation and upscaled macroscopic model

Author:

Zaouter Tony,Lasseux DidierORCID,Prat Marc

Abstract

The slightly compressible flow of a gas in the slip regime within a rough fracture featuring a heterogeneous aperture field is analysed in depth in this work. Starting from the governing Navier–Stokes, continuity and gas state law equations together with a first-order slip boundary condition at the impermeable walls of the fracture, the two-dimensional slip-corrected Reynolds model is first derived, which is shown to be second-order-accurate in the local slope of the roughness asperities while being first-order-accurate in the Knudsen number. Focusing the interest on the flow-rate to pressure-gradient relationship over a representative element of the fracture, an upscaling procedure is applied to the local Reynolds equation using the method of volume averaging, providing a macroscopic model for which the momentum conservation equation has a Reynolds-like form. The effective macroscopic transmissivity tensor, which is characteristic of the representative element, is shown to be given by a closure problem that is non-intrinsic to the geometrical structure of the fracture only due to the slip effect. An expansion to the first order in the Knudsen number is carried out on the closure, yielding a decomposition of the effective transmissivity tensor into its purely viscous part and its slip correction, both being given by the solution of intrinsic closure subproblems. Numerical validations of the solution to the closure problem are performed with analytical predictions for simple fracture geometries. Comparison between the macroscopic transmissivity tensor, obtained from the solution of the closure problem, and its first-order approximation is illustrated on a randomly rough correlated Gaussian fracture.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3