Abstract
The role of the Coriolis effect on the attachment of the leading edge vortex (LEV) is investigated. Toward that end, the Navier–Stokes equations are solved in the non-inertial reference frame of a high angle of attack $\unicode[STIX]{x1D6FC}$ rotating wing with the Coriolis term being artificially tuned. Reynolds numbers in the range $Re\in [100;750]$ are considered to identify the interplay between Coriolis and viscous effects. Similarly, artificial tuning of the centrifugal term is achieved to identify the interplay between Coriolis and centrifugal effects. It is shown that (i) the Coriolis effect is the key element in LEV stability for $Re>200$, (ii) viscous effects are the key element for $Re<200$ and (iii) centrifugal effects have a marginal role. The Coriolis effect is found to promote spanwise flow in the core and behind the LEV, which is known to promote outboard vorticity transport and presumably contributes to stabilizing the aft boundary layer. These mechanisms of LEV stabilization have increased authority as $\unicode[STIX]{x1D6FC}$ decreases.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献