Models of energy loss from internal waves breaking in the ocean

Author:

Thorpe S. A.ORCID

Abstract

The supply of energy to the internal wave field in the ocean is, in total, sufficient to support the mixing required to maintain the stratification of the ocean, but can the required rates of turbulent dissipation in mid-water be sustained by breaking internal waves? It is assumed that turbulence occurs in regions where the field of motion can be represented by an exact solution of the equations that describe waves propagating through a uniformly stratified fluid and becoming unstable. Two instabilities leading to wave breaking are examined, convective instability and shear-induced Kelvin–Helmholtz instability. Models are constrained by data representative of the mid-water ocean. Calculations of turbulent dissipation are first made on the assumption that all the waves representing local breaking have the same steepness, $s$, and frequency, $\unicode[STIX]{x1D70E}$. For some ranges of $s$ and $\unicode[STIX]{x1D70E}$, breaking can support the required transfer of energy to turbulence. For convective instability this proves possible for sufficiently large $s$, typically exceeding 2.0, over a range of $\unicode[STIX]{x1D70E}$, while for shear-induced instability near-inertial waves are required. Relaxation of the constraint that the model waves all have the same $s$ and $\unicode[STIX]{x1D70E}$ requires new assumptions about the nature and consequences of wave breaking. Examples predict an overall dissipation consistent with the observed rates. Further observations are, however, required to test the validity of the assumptions made in the models and, in particular, to determine the nature and frequency of internal wave breaking in the mid-water ocean.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3